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S U M M A R Y  
A long circular cylinder half immersed in the free surface of an ideal fluid undergoes small time periodic motions. The 
method of matched asymptotic expansions is used to give a solution in the high frequency limit. Of particular interest 
are the surface waves generated by this motion, and a three term asymptotic series for their amplitude is found. It is 
proved that there are no eigensolutions of the infinite vertical barrier problem containing waves which are purely 
outgoing, and it is shown how this can be used to predict the wave amplitude to a higher order than that of the 
matching solution. 

1. Introduction 

A long circular cylinder, half immersed in the free surface of a fluid of infinite extent with its 
generators horizontal, executes a small time periodic heaving motion. The aim of this note is to 
give details of a perturbation solution of this wave-maker problem in the high frequency 
(i.e., short wave) limit. 

A rigorous treatment of this problem has been given by Ursell [1], who obtained a first order 
estimate of the amplitude of the generated surface waves and the virtual mass of the cylinder. 
Later, Hermans [2] developed a"straightforward" asymptotic method to deal with the problem, 
and determined a three term asymptotic series for the wave amplitude. This method was 
intuitively similar to Van Dyke's [3] method of matched asymptotic expansions in that the 
solution was approximated by different asymptotic expansions in different regions. However, 
the author claimed that to the order of the solution he found, it was unnecessary to make the 
asymptotic expansions in adjacent regions satisfy a matching principle. 

Coordinates are chosen with the z-axis along the axis of the cylinder, the y-axis directed into 
the fluid, and the x-axis lying in the free surface. The lines x = a, y = 0 and x-- - a ,  y = 0 where 
the cylinder meets the free surface are denoted by P and Q respectively. We take the vertical 
heaving velocity to be V cos cot, and seek a two-dimensional irrotational velocity potential 
of the form Re {49(x, y)exp(-icot)}, which is finite at P and Q. Suppressing the time factor 
exp ( -  icot), the potential 49 (x, y) is specified by the linearized conditions 

49x~+ 49yy = 0,  in the fluid, (1.1) 

49,= Vy/a,  on S, (1.2) 

49 + e49y = 0,  on the free surface, (1.3) 

where subscripts denote partial derivatives, n is the outward normal from the submerged part S 
of the cylinder's surface, and e = g/co2 is (1/2re) of the wavelength of the generated surface waves. 
The conditions 

6(049/~6)~0 as 6-- ,0,  where 6 2-- (x+_a)Z+y 2 , (1.4) 

49 ~ A+ exp{(+_ix-y) /e}  as x ~  +_oe, (1.5) 

ensure boundedness at P and Q, outgoing waves at infinity, and hence the uniqueness of the 
potential 49. 

The method used here is the systematic method of matched asymptotic expansions developed 
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by Van Dyke [-3] as applied to short surface wave problems by Leppington [4, 5, 6], Ayad [7] 
and Alker [8]. The basic idea is that the fluid region can be covered by a number of overlapping 
domains, in each of which an asymptotic approximation for the potential ~b (x, y) may be found, 
the argument running briefly as follows. 

In the "outer region", points at distances ~>e from the free surface, the potential q5 is written 
as an asymptotic expansion involving powers and logarithms of e. This expansion is formally 
substituted into Eqn. (1.3) to obtain subsidiary boundary conditions of the form 

qbj(x, 0) = / ( x ) ,  Ixl > a ,  (1.7) 

where f(x) is either zero or the derivative of a previous term. Although this outer expansion is 
expected to be valid throughout most of the fluid, it is clear that the potentials q~ do not contain 
surface waves and the expansion fails near the surface. In particular, eigensolutions with 
singularities at P and Q may freely be added to each term of the expansion, their coefficients to 
be determined by matching. The limit of the outer expansion approaching these points is of 
the utmost importance however, and use is made of the polar coordinates (6, 0) defined at P by 

( x - a ,  y) = (6 cos 0, cS sin 0). (1.8) 

In the vicinity of the two intersection points P and Q, the potential will be sensitive to the wave 
bearing nature of the free surface, but will depend primarily on the local geometry of S near 
these points. This suggests that the potential in these "inner regions", points at distances ~ a 
from P and Q, is expected to vary on a wave-length scale, and for detailed examination we take 
coordinates 

(X, Y) = (R cos 0, R sin 0) = ((x-a)/~, y/e), (1.9) 

and the inner potential 

�9 (x ,  = +(x,  y) (1.10) 

is defined. Note that due to symmetry we need only consider one of the inner regions. In the 
inner region near P it is convenient to replace the boundary condition on S by a new condition 
on X = 0, by expanding S and d} in Taylor series in X. The actual details of this boundary 
condition and of the subsequent asymptotic expansion posed for the inner potential 4) are left 
to the main text, although it is noted here that each term of the inner expansion takes the form 
of a classical wave maker problem, the normal derivative on the vertical wave maker being 
given as a function of previously determined terms. Although the potential (b (X, Y) must be 
bounded at the origin, there is no such condition as R increases, so eigensolutions (unbounded 
at infinity) must be added to each "wave maker" solution. The coefficients of the eigensolutions 
in the inner and outer expansion arc determined when the expansions are matched together. 

The matching principle to be used is a modified version of that proposed by Van Dyke [-3] : 
the modification due to Crighton and Leppington [9] stipulates that all terms of the form 
e~ log e, e~ log log e must be grouped with e~ for matching purposes. We first define the expansion 
of the inner potential (b (R, 0; e) up to and including terms of order es by (p(s) (R, 0; ~). Then in 
order to match the inner potential q)(R, 0; ~) with the outer potential ~b (5, 0; e), we take the 
limit of q)(s) as R-+oo, and replace R by 5/e. This is expanded in ~ (for fixed 5), and truncated to 
include terms of order up to and including et, and the resulting series is denoted by 4) (s't). 
Similarly by replacing 6 by ~R in q~(t), expanding and truncating after es, we obtain q5 (t''). The 
matching condition is 

~b(",') = qU ,') , (1.11) 

for any s, t. 
Finally, the outer expansion is extended up to the free surface (for points >> e from P and Q) 

by simply continuing the surface waves--initially valid only in the inner regions--over the 
whole free surface. 

It is worthwhile to consider the values sand t must take to determine all of the coefficients of 
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the eigensolutions in the two expansions. For to ensure the matching condition (1.11) determines 
all inner eigensolution coefficients, t must be large enough to make (e."E) (~'~ non zero, where 
r < s and E is an inner eigensolution. The critical case is obviously r=s with the lowest order 
eigensolution (E=R sin 0 - 1 ) :  this demands t > s - 1 .  Similarly eigensolutions of the outer 
region require s > t - 1 .  As our main interest is in the surface waves and hence the inner 
solutions, we choose s = t + 1. 

If, however, only the amplitude of the surface waves is required and not a full asymptotic 
solution, we can use a simple but useful result concerning the eigensolutions of the inner 
region. It is proved in the appendix that there are no eigensolutions containing waves which 
are purely outgoing. So if a term in the inner expansion has an outgoing wave, its amplitude is 
determined by the wave maker solution, which in tuna is only dependent on previous terms of the 
inner expansion--in fact of scaling e lower (see boundary condition (2.8)). Thus to determine 
the generated waves to order eN, we need only find the inner expansion to eN- 1 and the outer to 
e~-2. This result readily applies to other surface wave problems where a body intersects the 
free surface normally: if the geometry of the body near the intersection point (a, 0) has the form 

X - - ( . /  = )~1 
r = M 

for 2 < M < 0% then the wave amplitude may be calculated to an order eM - ~ higher than that 
at which the inner solution has been matched. The case of plane vertical intersections (M = or) 
cannot be treated in this way, though a separate treatment (using matched asymptotic ex- 
pansions) has been given by Ayad [7]. 

In order to demonstrate the self-consistency of the system however, a full matching solution 
will be given with the inner expansion found to e 3 and the 2 outer to e . The calculated asymptotic 
series for the wave amplitude differs from that of Hermans [2] in both magnitude and phase, 
but far from suggesting any unreliability in singular perturbation type methods, this dis- 
agreement emphasizes the need for a thorough and systematic approach. In comparison with 
Hermans' work, note should be taken of the omission of a factor of 7r from Eqn. (4.3) onwards 
and that our outer potential ~b ~ suggests that the y coefficient of gJa should be -4U/c~rt and 
not - 5 U/aTz. 

2. Calculation of the asymptotic expansions 

As Leppington [5] has already given a formulation of this problem to first order, details will 
be kept to a minimum. 

In the outer expansion, we certainly expect terms with unit and e scaling (from conditions 
(1.2) and (1.3)), hence we pose 

q5 ~ ~b(1) = ~bo q -e~b  1 q- h(1)  (g) ~be , ( 2 . 1 )  

where the term hll)(e)q~e is added to indicate the possibility of terms of different scalings to 
order e. Clearly the potentials qS~ will be eigensolutions of the outer problem. Substitution of 
Eqn. (2.1) into the conditions (1.1)-(1.3) yields the following conditions for the harmonic ~b~: 

C~o,=Vy/a, 4~1, = O, o n S ,  

r =0,  q~l =-q~or, y = 0 , 1 x l > a .  
We find 

~0 = -a2  VY/( x2 + y2) + Eigensolutions. 

Now the symmetric eigensolutions of the outer region are: 

(2.2) 

t j as 
where z=x+iy ,  n >=0 is an integer. However, as the existence of these eigensolutions in q5 o 
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would require terms of order e-2 , -1  in the inner expansion we conclude 

Oo = - a  2 v y / ( x  2 + / )  . 

Using Eqns. (2.2) and the Green's function 

(s -- x) 2 + (t + y)2 (a 2 -- sx + ty) 2 + (tx + sy) 2 
L(s, t; x, y) = �89 log ( s _ x ) 2 + ( t _ y ) Z  + 1 log ( a 2 _ s x _ t y ) 2 + ( t x _ s y ) 2 ,  

we find 

= - -  tan-  ~ - + L ( x ~ f 2 )  2 rc+tan_l  X-ay X+ay 

X 2 _y2  ( x 2 +y2 - a x  
+ ~ 7 z -  t a n -  1 ay 

(X -- a) 2 + y2 
(x + a) 2 + y 2 

( (  1 1) 
+ xy +y2)2 + a s log 

+ Eigensolutions. 

In particular, as b ~ 0, 

f 62 b 3 
q5 ~ ) ~ V  - b  sin O + - -  sin 20 - ~ sin 30 + ... 

a 

x2 + yZ + ax t tan-1 ~YY / + 

+2aY( 1 ~2)]  
(x ~ + f )  + 

( 4 b (  2ha ( 2 ) ) 4 6  + c 1 + - -  log s i n O +  O -  cosO + - - s i n O  
aTc ate 

(2,4) 

(2.5) 

(2.6) 

232 log sin 2 0 + 0  cos 20 + - -  (3~ cos 20--4 sin 20)+. . .  
a 2 g  a27~ 

+ ~ n 0 ,  0). (2.7) 

We now construct the new wall boundary condition in the inner region. Using the inner 
potential q) and the co-ordinates (X, Y) as defined by Eqns. (1.9), (1.10), near P the condition 
(1.2) becomes 

(I,, +F'(Y)q~r = eVF'(Y) on X + F ( Y ) =  O, 

where - X = F (Y) = e y2/2a + ~3 y4/8a 3 +. . .  is the Taylor expansion of S near P. Expanding 
q~(X, Y) as a Taylor series in X about X = 0 ,  and replacing X by - F ( Y )  we find 

e (2 yq) r_  y 2 e 2 
�9 x + ~  ~xx) + gala ~ ( Y ' ~ x x ~ - 4 Y 3 ~ )  + 

~3( y6 / ~2 ~4 
+ ~ 1 2 y 3 C p y - - y 4 ~ x x -  -~-CI)xxxx+YSCPrxx = -- V Y +  V y 3 +  ... 

a 2 ~  ' 
on X = 0 .  (2.8) 

Replacing 3 by eR in Eqn. (2.7) and expanding in e, we find terms with scalings ~, ~2 log e, g2 . . . .  
which suggest the following expansion for the inner potential q5 

r ~ ~ta) = eq~0 + e2 log e, 4) 1 + ~2 (b 2 +/(2) (g)  qbe. (2.9) 

On substituting this expansion into the conditions (1.1), (1.3) and (2.8), we find that the potentials 
(b i(X, Y) are harmonic and must satisfy the conditions 

~bi+q~ir=0,  Y = 0 ,  X > 0 ,  

~ 0 x = ~ b l x = 0 ,  X = 0 ,  Y > 0 ,  

@2x = --(1/2a)(2Yqgor- y2 Cboxx) + V Y / a ,  X = O, Y > O. 

(2.10) 

(2.11) 

(2.12) 
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It is now clear that each inner potential is the solution of a classical wave maker problem, the 
solutions given in terms of the Green's function G are 

�9 ,(x,  r ' ; x ,  Y) dY' , (2.13) 

where 

G(X', g'; X, Y)= Go(X', Y'; X, Y)+Go(X', Y'; - X ,  Y) (2.14) 

is defined by 

Go(X', Y'; X, Y) = - i  e x p { i I X ' - X j - ( Y ' +  Y)} + 

l l~ +(Y'+Y): I  + 
t (  _ ) _~_(y, y)2j  

1 f ~176 t c o s ( Y ' + Y ) t - s i n ( Y ' + Y ) t  
rc o l + t 2  e-IX'-Xltdt" 

We find 

q~0 = A (R sin 0 -  1), 

4 h = B (R sin 0 -  1), 

cb 2 = -(2A/a)(gJ + C (R sin 0 - 1 ) ) ,  

where 
2 

t/t = 1R2 sin 2 0 -  R cos 0 + - R (sin 0 log R + 0 cos 0) 
rc 

2 log R 2 2i Cx-  ~ 2 ~~176 t cos Y t -  sin Yt e - x, dt (2.1 8) 
rc 71: 7r Jo l + t 2  " 

(2.15) 
(2.16) 

(2.17) 

We find 

hC~(e.) = l~2)(e) = 0 ,  A = - V, B = 4V/arc, C = 2 ( l - l o g  2a) 
7r 

and the outgoing waves are 

0 ~ -(4V/arc) e2e-ia/~e~• Y)/~, as x - .  +oo . 

To continue, we pose for the outer expansion: 

4 ~ q~(2) = 40  -~ e(/)l -[- g2 (/)2 -]- h(2) (g) ~be- 

The potential 4~2 is harmonic and must satisfy 

4~2.= 0 on S,  q~2 = - ~ l y  y - 0 ,  Ixl > a .  

Using the Green's function, Eqn. (2.3) we obtain 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Va2Irc2y(3x2_y2 ( t 1 ) + 4 y ( ( ~ _ _  1 )  4V 4 4 2 +  ) + 
arc arc ~ T  (x 2 + y2)3 a 6 ~2 + y2) + ~ + 

+ T(z)-  T(Y)- T(a2/z)+ T(a2/5)1 + Eigensolutions, (2.23) 
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As the integral in Eqn. (2.13) only converges if cl)ix,--*O as Y'~oo,  simple harmonic potentials 
satisfying the free surface condition (2.10) are subtracted from the potential q~2 before Eqn. 
(2.13) is used. In this case, allowing for logarithmic singularities at the origin, the condition 
(2.12) can be satisfied exactly. The singularity is then removed by the addition of a suitable 
multiple of G (0, 0; X, Y), and hence 7 j is obtained. Note that higher eigensolutions of the form 
R2n+ 1 sin (2n + 1)0- (2n  + 1)R 2n cos 2nO should have been added to each potential (especially 
before the use of Eqn. (2.12)) but as each would require a term in the outer expansion of order 
e-~ or worse, they have been omitted. 

The inner and outer expansions are now matched together using the condition q~(2, a~ _ ~bc1,2( 
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where 

T(z) = -  ~(zl~ + ~44) ( ( i ~  e -  2reil~ - (2.24, 

Here, z=x+iy ,  the cuts in log(zTa) are taken from +_a to _+co along the real axis, and 
log(xT-a+iy)--+ln(x-T-a) as y-+0+, x >a. Note ~b 2 is real, In particular, 

4a~V2 { 6 [ (  ~ ( r e )  ) r c  q52~ 2are+arelog~-aa+C54 log s i n 0 +  0 - ~  c o s 0 - ~ c o s 0 +  

+ 21~176 l~ c5 ) ( 2~ ) 2 a -  02 sin0-rc log c o s 0 - 0 s i n 0  

_ ( ~ 2 _ 2 ) s i n  0~ + ...} + E.(& 0), as 3 ~ 0 .  (2.25) 
J 

The presence of the (log (a/2a)) 2 term implies the existence of a potential with scaling e 3 log 2 ~: 
in the inner expansion, and so we pose 

~cl)(3)=gq)oq-g21oggdPlq-g2~2q-g31og2g~3+g31ogg434-kg3cDsq-l~3)(g)~e . (2.26) 

As before the boundary conditions for the new potentials are obtained by substituting the 
above expansion into Eqn. (2.8): 

tb3x = ~ x  = 0, (2.27) 
~4x = - (1/2a)(2 ycb l r - y 2  ~91xx) ,  (2.28) 
es x = _ (1/2a)(2rcb2 " -  y24)zxx) _ (1/8a2)(y4Cboxxx _4y3 eoYx), on X = 0, g >0 .  

(2.29) 

(The wave amplitude to e 3 may now be found directly: the potentials ~b 3 and ~b e are clearly 
wave free, ~4 has wave amplitude exactly - 4~are times that of ~b 2, and ~b s has outgoing wave 
-2ieiX-rj '~ ~ (bsx, e-r 'dY') .  It follows that 

q~3 = D(R sin 0 -  1), (2.30) 

q)4 = -(4V/aZre)(Ta+F(R sin 0 -  1)). (2.31) 

Substitution of Eqns. (2.15) and (2.17) into Eqn. (2.29) gives for the potential ~s, 

2V 4V 2V 
~bsx(0 , Y ) -  (5-2  log 2 a ) Y -  Ylog Y + - -  a2re a2re acre 

2iVa z ( 2 y - y e ) e - r  a 22V Ore 0Y(Y2 f ~176 tZsinYt+tC~ e Y t d t ) .  (2.32) 

Suitable harmonic potentials arc subtracted from the potential ~b5, then use of the Green's 
function Eqn. (2.14) gives: 

(b5 (X' Y)= a~/~ [(2 l~ 2 a - 5 ) L P - 2 (  H +  f ~G(0'o Y"X , ,  Y ) ( Y ' l o g Y ' - H x , ( O , Y ' ) ) d Y ' ) +  

+ 2 ( R ( l ~ 1 7 6 1 7 6  f ~ 1 7 6 1 7 6  l + t  2 e X~dt) 

- ire G ( 2 Y ' - Y ' 2 ) e - r ' d Y ' +  Gr, y,Z t2sin Y ' t + t c o s  Y't  , 
o o l + t 2  dtdY + 

sin 0 -1 )+v(R 3 sin 3 0 - 3 R  2 cos 20)}. 
% 

+ /~(R (2.33) 
J 

Where ff is given in terms of Z = X + i Y  by 
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" i Z2 i H ( X ,  Y ) = R e  ! Z 2  log(Z+ 1 ) +  - - Z ( l o g ( - i ( Z +  1))) 2 
- 2  4 

2i 1 ( log(Z+l ) )  2 2 Z l o g ( Z + l )  + l o g ( Z + l )  + 
7c ~ Z + I  

4 + ~ Z  ~z 1 ~Z_} 
+ 2~r(z+ 1) + 4 + 2 + " (2.34) 

In particular, as R ~ 0% 

~ v  ( 
(bs ~ ~27~ t ( (14-  4 (log 2a + 7 ) ) i -  �89 iX Y - -  R2 (log R sin 28 + 0 cos 28) + 

7r 2 7r R 7 
- 2  R I ( l o g 2 R  - ( 8 - ~ )  t s i n  0 + 2 ( 0 -  ~-)cos 0log J + + (log 2 a - 2 ) R 2 s i n 2 0  

4 2 
+ - (log 2a -2 )R( log  R sin 0+8  cos 8 ) + ( 5 - 2  log 2a)R cos 0 + - ( log2R-  02) + 

7C 72 

4 4 rc 
+ ; (3--log 2a) log R + -72 (2 - log  2a) - ~ + #(R sin 0 -  1) + 

+ v(R3sin 3 0 - 3 R 2 c o s 2 0 ) + o ( 1 ) l .  (2.35) 

The eigensolution coefficients D, F, # and v are determined using the matching condition 
r  t o  be 

D = - 4 Via 2 ~z ~ , F = 2 (2 - log  2a)/~z, (2.36) 
# = 2 (37r2/4- 2 + 4 log 2 a -  log 2 2a)/7c, v = - 7r/2. 

Also, hC2)(~:)=/(3)(,~:) = 0.  

The solution is satisfactorily completed, and the outgoing wave trains are given by 

2V { - 2aTzie 2 + 4ie 3 log e + ~ e-ia/~ e ~+-ix-y)/` (2.37) 
q5 ~ a~-~ + . ( (14_4( log2a+?) ) i_ �89  , as x ~ _ + ~ .  
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Appendix: Eigensolutions of the infinite vertical barrier problem 

We define an eigensolution of a sloping beach problem to be a solution satisfying homogeneous 
boundary conditions with no incoming wave, which is harmonic in the fluid and bounded at 
the intersection of the free surface and the beach. As we are only interested in eigensolutions 
which will match with some outer potential we may assume that the solution minus its outgoing 
wave is bounded by R ", for large R. It is well known that if ~ < 0 the eigensolution is identically 
zero, but if ~ is merely restricted to be a positive integer, eigensolutions do exist. With all 
sloping beach problems except the vertical case, these solutions have outgoing waves. We now 
prove that eigensolutions of a vertical beach problem are wave-free. 

We seek potentials ~b, harmonic in the quarter plane X> 0, Y > 0, which satisfy 

�9 +~br = 0,  Y = 0 ,  X > 0 ,  

~bx = 0,  X = 0 ,  Y > 0 ,  

R(&b/~R)--+O, as R ~ 0 ,  
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~b has no incoming waves ,  (A.1) 

= O(R N) as R ~ o o ,  0_< 0 <  ~z/2 for some integer N .  (A.2) 

To distinguish between the wave-like and wave-free parts  of q, (for large R), we note that  the 
surface wave potentials  e - i x - r  and e i x - r  (corresponding to incoming and outgoing waves 
respectively) may  be differentiated any number  of times and still remain O (1) as R ~ 0% 0 =  0. 
Thus, due to (A.1) and (A.2), there exists an integer M and a complex number  A (the ampl i tude  
of the outgoing wave) such that  

02M 
OR2M ( ~ - A e  ~x-Y) = O(1/R), as R ~ o e ,  0 <  0_< re/2. (A.3) 

Recall  that  if the potent ial  O is an eigensolution which satisfies 

f 2 - A e  ix-r = O(1/R), as R--*oo, 0-< 0 <  ~ /2 ,  (A.4) 

then f2 is identically zero, and A = 0. 
We now prove that  the existence of the eigensolution �9 with non zero constant  A = A* in 

(A.3), implies the existence of  the eigensolution f2 with outgoing  wave A*e ~x- r which satisfies 
(A.4). 

Firstly, the potent ial  q~ is ha rmonic  in X > 0, Y > 0. The Schwarz Reflection Principle can 
be used to make  an analytic cont inuat ion of q~ across X = 0, Y > 0 and Y = 0, X > 0, so we need 
only show that  4~ is ha rmonic  at the origin. Using Green ' s  Theo rem on q~ and G (the exact 
Green ' s  function (2.8)) in the quar ter  circle bounded  by  

FI:O<-X<I ,  Y = O ;  F2:O<-Y<_I ,X=O;  F:O<_O<_Grc/2, R = l  ; 

we find 

qs(x, y)  = f r ( G ( X ' , Y ' ; X , y ) q ~ R , ( X ' , y ' ) - - q b ( X ' , Y ' ) G R , ( X ' , Y ' ; X , Y ) ) d s .  (A.5) 

N o w  as �9 and ~R are ha rmonic  on F, and G (cos 0', sin 0 ' ;  X, Y) is ha rmon ic  for X 2 + y2 < �88 
say, (A.5) provides an analytical  cont inuta t ion of ~b into this circle abou t  the origin, and in 
par t icular  ~ is ha rmonic  at the origin. So �9 and any derivative of �9 is ha rmonic  in X => 0, 
Y > 0 .  

Finally, if �9 is an eigensolution with wave ampl i tude A*, then 4~rr is an eigensolution with 
the same wave amplitude.  Fo r  

0 2 

ebrrx(O, Y) = ~ Cl)x(O, Y) = O, 

02 
�9 y (x, o ) -  a x  2 0)) = o .  

Hence O=(02M/oy2M)~ is also an eigensolution, but  

O - A * e  ~x-r = O(1/R), as R ~ o o  0 <  0 <  ~ /2 ,  

where A* # 0. Contradict ion.  
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